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Abstract Natural convection of air in a two-dimensional, rectangular enclosure with localized
heating from below and symmetrical cooling from the sides has been numerically investigated.
Localized heating is simulated by a centrally located heat source on the bottom wall, and four
different values of the dimensionless heat source length, 1/5, 2/5, 3/5 and 4/5 ave considered.
Solutions are obtained for Rayleigh number values from 10° to 10°. Local results are presented in
the form of streamline and isotherm plots as well as the variation of local Nussell number on the
heated wall. Finally, the average Nusselt number at the heated part of the lower wall, Nu, was
shown to increase with an increase the Rayleigh number, Ra, or of the nondimensional heat
source thickness, e.

Nomenclature

g = gravitational acceleration, m/s? Greek symbols

Gr = Grashof number, dimensionless = thermal diffusivity, m*/s

= height of the enclosure, m thermal expansion coefficient, 1/K
= length of the heat source, m vorticity, 1/s

= length of the enclosure, m nondimensional temperature

= coordinate in normal direction nondimensional vorticity

Nu = Nusselt number, dimensionless nondimensional time

Pr = Prandtl number, dimensionless stream function, m?/s

Ra = Rayleigh number, dimensionless nondimensional stream function
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T = temperature, K nondimensional length of the heat
t =time, s source
u = velocity component in x-direction, m/s  ® = generalized nondimensional variable
U = nondimensional velocity component in .

x-direction Subscripts
v = velocity component in y-direction, m/s IC-} i EOld Waﬁll
V = nondimensional velocity componentin ', ot wall

y-direction i, J = coordinate indices
X, ¥ = coordinates defined in Figure 1 wall f at Will.l i
X,Y = nondimensional coordinates + = I x-direction

y = in y-direction
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have addressed natural convection in enclosures due to either a horizontally or
vertically imposed temperature difference. However, departures from this basic
situation are often encountered in such fields as the electronics cooling. The
cooling of electronic components is essential for their reliable operation.
Natural convection cooling has been widely used because of its simplicity, low
cost and reliability (Incropera, 1988; Peterson and Ortega, 1990; Kim and Lee,
1996).

Torrance et al. (1969) experimentally and Torrance and Rockett (1969)
numerically studied the convection of air in a vertical cylindrical enclosure,
induced by a small hot spot centrally located on the floor. Solutions were
obtained for Grashof numbers from 4 x 10* to 4 x 10'°. The theoretical results
were found to be in an excellent agreement with the experimental ones in the
laminar region. Chu et al. (1976) studied, both theoretically and experimentally,
the effect of the size and location of an isothermal, horizontal strip in an
otherwise insulated vertical surface of a rectangular channel. For a similar
cavity, Turner and Flack (1980) made an experimental study. The natural
convection in an inclined box with the half of the lower surface heated and the
other half insulated was investigated experimentally and numerically by Chao
et al. (1983). The effects of elevation of the heated and insulated segments were
investigated, as well as of inclination about the longer dimension. An
experimental investigation was conducted by Kamotani ef al. (1983) to study
natural convection heat trasnfer in a water layer with localized heating from
below. The flows were driven by maintaining a small circular heat source, at a
uniform temperature. The flow structures and temperature fields were
investigated in detail for various aspect ratios (depth/width) and Grashof
numbers Gr. Steady natural convection in a square, water-filled enclosure
heated from below and cooled on one vertical side is studied analytically and
numerically by November and Nansteel (1987). Keyhani et al (1988)
investigated, both numerically and experimentally, natural convection in a
vertical cavity with one isothermal vertical cold wall and three alternatively
adiabatic and flush-heated sections of equal height on the opposite wall. A
numerical investigation of natural convection of air in square cavities with half-
active and half-insulated vertical wall was made by Valencia and Frederick
(1989). An experimental and numerical study was made by Chu and Hichox
(1990) for natural convection in an enclosure with localized heating from below
in order to simulate the convective transport in a magma chamber. The large
viscosity variation characteristics of magma convection was simulated by
using corn syrup as the working fluid. Hasnaoui et al (1992) numerically
investigated natural convection in an enclosure with localized heating from
below. The upper surface was cooled at a constant temperature and a portion of
the bottom surface was isothermally heated while the rest of the bottom surface
and vertical walls were adiabatic. The existence of multiple steady-state
solutions and the oscillatory behavior for a given set of the governing
parameters were demonstrated. Ganzorolli and Milanez (1995) numerically
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analyzed steady natural convection in an enclosure heated from below and
symmetrically cooled from the sides. The effects of the Rayleigh number, the
Prandt]l number and aspect ratio on the flow and energy transport were
determined. Ramos and Milanez (1998) performed an experimental and
numerical analysis for natural convection flow caused by heat sources
dissipating energy at a constant rate simulating electronic components
mounted at the bottom surface of a cavity symmetrically cooled from the sides

In the present study, natural convection in a square enclosure with localized
heating from below and symmetrical cooling from the sides is considered. As it
appears from the existing literature, this study is the first attempt at studying
the natural convection phenomenon in an enclosure under the above mentioned
thermal conditions. Symmetrical cooling from the sides is expected to be an
efficient cooling option, while partial heating at the lower surface simulates the
electronic components such as chips. Since natural convection flows in
enclosures arise in many engineering processes, the results to be obtained here
may be applicable to other fields of interest. The effects of the Rayleigh number
and the nondimensional isothermal heat source length on the fluid flow and
heat transfer are determined. For € = 0, which means that the whole part of the
lower wall is heated, the boundary conditions applied here are identical to those
considered by Ganzorolli and Milanez (1995).

Consider the motion of a viscous fluid within a square enclosure with equal
length and height, L = H, which is depicted in Figure 1. The size of the
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enclosure in z-direction is assumed to be infinitely long. The lower wall has a
centrally located heat source which is assumed to be isothermally heated at a
constant temperature Ty The sidewalls are isothermally cooled at a constant
temperature T, while the bottom surface, except for the heated section, and the
upper wall are considered to be adiabatic.

Mathematical formulation

The nondimensional set of the governing equations (stream function, vorticity
and energy equations) for a two-dimensional, incompressible laminar flow with
constant fluid properties are given as (Aydin et al., 1999a)

PV P
1) G ) & § 1)
0 0 0 _p (0 o »
o TVax a—Y_PV<aX2+aY2 +Ralras @)
o0 0 00 %0 50
b g& & _ov I 3
aT+U8X+V3Y 8X2+8Y2 (3)

where the nondimensional parameters including stream function and vorticity
are defined in the following forms

X _y T-Tc _at _u v
X=g Y=g =77 "m Y=am "=aom ¥
o ov v aU

U=av V=ax Tax oy ®)

Appearing in equation (3), Pr = v/« is the Prandtl number and Ra = gBH Ty —
To)/va is the Rayleigh number.

Boundary conditions

Through the introduction of the nondimensional parameters into the physical
boundary conditions illustrated in Figure 1, the following nondimensional
boundary conditions are obtained:

0=0 U=V=0 at X=01 0<V<l (6)
1 1

0=1 U=V=0 at Y =0, 26§X§ ;6 (7)
90 l—elte

8_Y:O U=V=0 at Y=0, 0<X< 5 g <X<1 (8
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o0
oy =0 U=V=0a Y=1 0<X<1 )

For stream function, the boundary condition for entire surface of the enclosure
is taken to be

U =0 (10)

which implies that there is no mass transfer through the walls of the enclosure
and that the boundaries themselves form one of the stream lines.

In general, the value of the vorticity on a solid boundary is deduced from
Taylor series expansion of the stream function ¥ around the solid point and
can be expressed mathematically as

R

Swall = o

(11)
where &, is the value of the vorticity at wall and # is the outward drawn
normal of the surface. In numerical calculations, the values of vorticity at
corners are taken as averages of the values of vorticity at two neighboring
nodes (Aydin et al., 1999a). o

The average Nusselt numbers, Nu for the heated portion of the lower wall is
given by

ML:/ZNMXMX (12)
1‘_2(
where Nu(X) is the local Nusselt number and is given by
00
Nu(X) = [— 8_Y} L (13)

Numerical procedure

The governing equations along with the boundary conditions are solved
numerically, employing finite-difference techniques. The vorticity transport
and energy equations are solved using the alternating direction implicit method
of Peaceman and Rachford (Roache, 1982), and the stream function equation is
solved by SOR (successive over-relaxation) method (Patankar, 1980). The over-
relaxation parameter is chosen to be 1.8 for stream function solutions. In order
to avoid divergence in the solution of vorticity equation an under-relaxation
parameter of 0.5 is employed. The buoyancy and diffusive terms are discretized
by using central differencing while the use of hybrid differencing is preferred
for convective terms for numerical stability. Starting from arbitrarily specified
initial values of variables, the discretized transient equations are then solved by
marching in time until an asymptotic steady-state solution is reached.



Convergence of iteration for stream function solution is obtained at each time
step. The following criterion is employed to check for steady-state solution

n+1 n
) ‘%’ —
ij

where ® stands for U, &, or 6; n refers to time and 7 and ; refer to space
coordinates. The value of ERMAX is chosen as 10~°. The time step used in the
computations is varied between 0.0001 and 0.001, depending on Rayleigh
number and mesh size.

A non-uniform mesh structure is employed, which is constructed using finer
grid spacing near the walls and the mixed boundary points for each case. The
mesh structure is changed for each e because of the shifted position of the
mixed boundary points. For each case, a mesh refinement study is conducted
and finally the mesh structure on which finer mesh refinement does not have a
significant effect on the results is chosen and used for simulations. As an
example, for € = 1/5 at Ra = 10% it is observed that increasing the mesh size
from 51 x 51 to 81 x 81 resulted in the changes of ¥,,,,, and Nu by less than 1
percent. Therefore, 51 x 51 mesh size is approved to be sufficient to resolve the
velocity and temperature fields for the related case.

The validity of the computer code developed has been already verified for
the problem of natural convection in a square cavity having differentially
heated vertical walls and the problem of laminar natural convection in inclined
air layers heated from above (Aydin ef al.,, 1999a; 1999b).

< ERMAX (14)

Results and discussion

Flow fields, temperature fields, and heat transfer rates for various values of the
Rayleigh number and the nondimensional size of the isothermal heat sources
are examined in this section. In order to simulate air cooling of electronic
components air is chosen as the working fluid (Pr = 0.71).

The main characteristics of the natural convection flow and energy
transport in an enclosure including a centrally located isothermal heat source
are shown in Figure 2-5. Flow and temperature fields are shown in terms of
streamlines and isotherms, respectively. For each case, 20 equally spaced
contours have been used to define the corresponding structure. These figures
show the effect of changing Rayleigh number for 10° < Ra < 10° and the effect
of changing the dimensionless length of the heat source for e = 1/5, 2/5, 3/5 and
4/5. Owing to the symmetrical boundary conditions on the vertical walls, the
flow and temperature fields are symmetrical about the mid-length of the
enclosure. The symmetrical boundary conditions in the vertical direction result
in a pair of counter-rotating cells in the left and right halves of the enclosure for
all the parametric values considered. Owing to the symmetry, the flows in the
left and right halves of the enclosure are identical except for the sense of
rotation. Each cell ascends through the symmetry axis, then faces the upper
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Figure 2.
Streamlines and
isotherms for € = 1/5
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Figure 4.

Variation of the local
Nusselt number N at
the heated wall for
various Rayleigh
numbers at € = 2/5

Figure 5.

Variation of the average
Nusselt number Nu at
the heated wall with the
Rayleigh number for
various nondimensional
heat source lengths, €
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adiabatic wall through which it moves horizontally toward the corresponding
cold wall and finally it descends along the corresponding cold wall under the
effect of cooling.

Figure 2 illustrates the streamline and isotherm patterns obtained for € = 1/5.
For Ra = 103, the circulation inside the enclosure is so weak that the viscous



forces are dominant over the buoyancy force. As it can be seen from the figure,
1sotherms deviate slightly from a diagonally symmetric structure, which is the
conduction solution (Re = 0). This leads the conduction to be dominant heat
transfer mechanism inside the enclosure. With increasing Rayleigh number, the
intensity of the recirculation inside the enclosure increases and the cores of the
cells move upward. At Ra = 10%, isotherms deviates from the diagonally
symmetric structure and conduction and advection modes of heat transfer are
in a comparable level. Beyond Ra = 10%, the distortion of the isotherms
increases more and more and the advection takes the revenge, becoming the
dominant mode of heat transfer. At Re = 10°, the formation of thermal
boundary layers can be observed due to increased recirculation intensity. At Ra
= 10% the thermal boundary layers become thinner causing increased energy
transport. In addition, isotherms become stratified and the degree of
stratification increases with increasing Ra. Streamlines and isotherms for e = 4/
5 at different Rayleigh numbers are seen in Figure 3. The flow fields are nearly
identical to those of € = 1/5 for each Rayleigh number. However, the isotherms
are effected by the increasing ¢, as expected. Since the heated part of lower
surface is larger than that of e = 1/5, the heating effect at this case is much more
sensible for the same values of Rayleigh numbers. For a fixed Ra, with
increasing ¢, the flow field remains almost the same, while the temperature
fields changes becoming more stratified for larger values of Ra.

Owing to the symmetry in the temperature field, heat transfer is
symmetrical with respect to mid-length (x = L/2), hence Nu (x = %) =
Nu (x = LT”) As an illustrative example, Figure 4 shows the variation of Nu
along the heated part of the lower wall for ¢ = 2/5 for various Rayleigh
numbers. The higher Ra means more heat input, and as a result, more heat is
added to the fluid to intensify the fluid convection. The intensified fluid
convection, in turn, enables more heat to be received by the fluid pack through
convective heat transfer. The most striking feature of this figure is the
minimum at heat transfer in X = 1/2. This minimum originates from the
symmetrical boundary conditions applied in the vertical direction. The dual-
cell structure prohibits direct convective transfer between these two cells. Each
cell behaves like an insulator preventing the fluid pack from coming into
contact with opposite cold wall.

Plots of the average Nusselt number on the heated part of the lower wall as a
function of Ra and e are shown in Figure 5. For a fixed e, increasing Ra
enhances convection. In addition, increasing e for a fixed Ra results in an
increase at Vi, which is more significant for high Ra values. These results can
be clearly explained under the views of the isotherms given in Figure 2 and 3.

Conclusion

In this investigation, the results of a numerical study of buoyancy-induced flow
and heat transfer in a two-dimensional square enclosure with localized heating
from below and symmetrical cooling from the sides are presented. The main
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parameters of interest are Rayleigh number and the dimensionless heat source
length. The flow and temperature fields are symmetrical about the mid-length
of the enclosure due to the symmetry of the boundary conditions in the vertical
direction. For small Ra, the heat transfer is dominated by conduction across the
fluid layer, while for high Ra the process is primarily one of convection, and the
effect of conduction vanishes. Increasing e enhances the heat transfer, as
expected, especially for high values of Rayleigh number.
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